
Referee: A Pattern-Guided Approach for Auto
Design in Compiler-Based Analyzers

Fang Lv∗, Hao Li∗, Lei Wang∗, Ying Liu∗, Huimin Cui∗, Jingling Xue†, and Xiaobing Feng∗
∗SKL Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, China

†School of Computer Science and Engineering,University of New South Wales, Australia
flv@ict.ac.cn, lihao2018@ict.ac.cn, wlei@ict.ac.cn

liuying2007@ict.ac.cn, huimin.cui@gmail.com, jingling@cse.unsw.edu.au, fxb@ict.ac.cn

Abstract—Coding rules become more critical for security-
oriented softwares, which prefer compilers as their base platform-
s due to simultaneous demands not only in a mature grammatical
analysis, but also in compilation and optimization techniques.
However, engineering such a compiler-based analyzer, exploring
proper launch points before integrating hundreds of rules one
by one in the frontend of compilers, is a completely manual
decision-making process with heavy redundant efforts exhausted.
To improve this, we introduce a novel pattern-guided approach,
named Referee, to facilitate this process. Referee improves the
manual approach significantly by making three advances: (1)
our pattern-guided approach can significantly reduce the amount
of redundant manual efforts required, (2) a twin-graph aided
broadcasting process is developed to enable rule patterns to be
characterized with partially developed rules, and (3) a reliable
recommendation mechanism is used to pinpoint the launch point
for a new rule based on the accumulated experience from
handling earlier rules.

We have implemented Referee in GCC 8.2 with 163 rules from
SPACE-C and MISRA-C standards. Referee achieves an accuracy
of 89.9% on recommendation of launch points for new rules to
our GCC-based analyzer automatically when trained with 70%
of all the rules. Decreasing the training data size to 60% and
50% still yields an accuracy of 87.7% and 81.5%, respectively.
Therefore, Referee can significantly reduce the amount of manual
efforts that would otherwise be required, with a careful selection
of seeding rule patterns, providing an interesting and fruitful
avenue for further research.

Index Terms—pattern-based, machine-learning, coding rules,
analyzer, compiler

I. INTRODUCTION

Coding rules define a consistent syntactic style, fostering
not only readability, but also safety and maintainability [1]–[6].
They are becoming increasingly critical especially for security-
oriented softwares. Many coding rules prefer to be constructed
in compilers due to their higher demands in the maturity of
grammatical analysis [4]. Therefore, a compiler-based analyzer
is capable of carrying out safety inspection while compiling
and optimizing simultaneously. However, engineering such a
compiler-based analyzer, exploring the complicated compiler
architectures and performing enhancement, is a time-consuming
process which urges for innovation. The existing manual-mode
development spends considerable time exploring proper launch

This work is supported in part by the National Key R&D Program of
China (2017YFB0202901), CCF-Tencent Open Reseacrch Fund grant, and
the National Natural Science Foundation of China (61802368, 61521092,
61432016, 61432018, 61332009, 61702485, and 61872043).

Fig. 1. Deep calling stack in the GCC-base analyzer and our pattern-guided
design approach. Redundant manual efforts on locating launch points can be
saved via exploiting previous experiences on similar-looking rules.

points (the calling sites of inspection modules for rules) before
integrating hundreds of rules one by one in the frontend
of compilers. More importantly, the rules keep on updating,
e.g., 169 rules in 2008 and additional 159 rules in 2012 are
supplemented in MISRA-C [5]. This becomes an essential, and
heavily burdened work which hurdles the widespreading of the
techniques deeply, but few mitigation exists.

Fig. 1 demonstrates this tediousness as to figuring out
the proper calling site to implement a rule’s inspection, e.g.,
searching in the 14-layer deep calling stacks for Rule 14.1.2,
compared to usually only a few dozens of lines in its inspection
codes. Our experiences in the GCC-based analyzer for SPACE-
C [6] show that it takes longer than 6 months to complete
the whole code design for 163 rules of SPACE-C. During this
process, some efforts have to be consumed on pinpointing the

978-1-7281-5143-4/20/$31.00 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

1

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Examples from SPACE-C user guideline. Rules indexed with their primary categories are demonstrated on the left, while information about their
launch points are recorded in the invocation pattern table (IPT) on the right.

launch points for highly similar rules redundantly. This sheds
some lights on us that a more intellectual way, i.e., guiding
design under certain rule patterns, can save redundant manual
efforts and enhance the existing development.

In a rule description, some key words, i.e., rule patterns, can
work as hints for their launch points. Fig. 1 demonstrates the
pattern-based idea. In pre-design, Rule 14.1.2 is carried out
at the inspection spot underlined inside the 14th layer of the
calling stack. Here all necessary data it requires can be derived
from the launch point’s parameter lists in blue. For another Rule
6.1.15 in the lower part of the figure, due to the commonness it
has with Rule 14.1.2 in the key attributes of “expressions”
and “logical”, it can be recommended directly with the
same launch point at function c_parser_condition of c-parser.c.
This means once the similarity (similar words) in coding rules
can be uncovered, some experiences from the previous design
process can be applied to "similar looking" rules. In this way,
previous experiences can be applied to new rules naturally.
Thus, it is needless to struggle for every launch point any more
and the redundant manual locating process can be avoided. We
call this method Referee, and the similarities in coding rules
rule pattern.

Referee is based on pattern recognition which facilitates
the design of compiler-based analyzers. Unlike the previous
manually coding process which designs rules one-by-one, our
goal is to ease the burden by automatic recommendations for
new rules based on a few implemented rules. We achieve
this by first applying popular machine-learning algorithms
about patterns in the design process. Referee includes two
processes, a training process to recognize similarities in rule
patterns and their calling sites, and a recommendation process
to apply knowledge on new rules automatically. First, it portrays
invocation patterns and deduces similarity information from
launch points of partial developed rules. After broadcasting
key information to rules by a twin-graph aided method, it
then navigates the training on rule characteristics, i.e., rule
patterns. Finally, a relation atlas between two kinds of patterns
is established, every rule pattern pointing to an invocation
pattern (a launch point). In the later recommendation stage, it
applies pattern characterization to new rules, and recommends
proper launch points according to similarity analyses. In this
way, the redundant manually locating overheads can be cut
down. Once it fails, Referee improves itself via new patterns
supplements and automatic updates.

Our experimental results with SPACE-C and MISRA-C user
guidelines show that a design guided by similar patterns can
outperform the state-of-the-art one-by-one manual method.
Trained on randomly selected seeds of invocation patterns,
Referee can recommend successfully for 81.5% to 89.9% new
rules, and the corresponding manual efforts can be saved. When
enhancing the coverage on invocation patterns and rule features,
the accuracy in recommendation can promote synchronously,
from a lower rate of 81.5% to 87.7%. Such a pattern-guided
methodology represents an encouraging direction for experts’
experience and industry standards to be highly efficiently
integrated into general-purpose code analyzers.

This paper makes the following contributions:
• Referee, to the best of our knowledge, is among the

first efforts to facilitate the manual design process for
compiler-based analyzers with machine-learning. This is
a preliminary step towards automatic design in compilers,
and also an encouraging direction to integrate the expert
designers’ experiences in the compiler-based analyzers.

• A novel twin-graph aided method for pattern recognition
has proposed. It overcomes the insufficiencies in coding
rules by digging decisive information from known calling
sites, and navigating the characterizing for rule patterns.

• Experiments on rules from SPACE-C and MISRA-C
demonstrate the feasibility of Referee. Training with 50%
- 70% random rules can yield up to around 90% accuracy
in recommendations for launch points of new rules. The
accuracy can further improve with broader coverage on
pattern seeds. These results also certify the extensibility
of Referee to a wider range of user guides.

II. MOTIVATION

In this section, we first describe the existing complicities in
manual design (Section II-A). We then examine the challenges
faced for an intelligent design (Section II-B). Finally, we
introduce our method of Referee, which accumulates knowledge
about patterns from developed rules, and applies on new rules
by an example (Section II-C).

A. The Manual Design

Current design for an analyzer coupled with compilers
is a completely manual decision-making process. Fig. 2
demonstrates 5 rule examples from SPACE-C user guideline
and their implementations. On the left, each rule is indexed with

2

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The automatic self-training and recommendation process of Referee for relieving redundant manual efforts.

M.N.X. M represents the primitive category in the guideline,
e.g., 6 for Arithmetic Processing (abbr. C6), 12 for Type
Conversion (abbr. C12) and 14 for Pointers (abbr. C14). N
is the strictness of the rules (1 is prohibited usage and 2 is
recommended usage), and X is the indexed sequence inside
the category. The following is the detailed coding rules. On
the right, the launch points where these rules should be carried
out are recorded in the invocation pattern table (IPT). Each
item is composed of the hosting file, the function module, and
necessary parameters. Inspection codes for these rules have
been completed one-by-one by designers in the compiler.

Fig. 2 presents the interleaved and disordered relation
between rules and launch points in real implementations. On
one side, rules from the same primary category are dispersed
due to diversified requirements on information, such as Rule
12.2.1 and 12.2.2 from C12 are designed in the 2nd and the 3rd

launch points respectively with different parameters and the
callers’ name. Conversely, a launch point on the right always
serves multiple categories of rules irregularly, e.g., the 1st

launch point contains Rule 6.1.15 from C6 and Rule 14.1.2
from C14. These irregularities illustrate the difficulties in the
exploration in compilers. Untangling this complexity depends
entirely on manual analysis at present.

Despite these irregularities, we have discovered some op-
portunities about patterns in the figure. Rule 6.1.15 and Rule
14.1.2 in the same launch point of c_parser_condition in c-
parser.c, the 1st point in IPT table(with slightly differences in
parameters), have the same words of “expressions” and
“logical”. This commonness enlightens us that we can save
efforts by making good use of similar-pattern recognition.

B. Challenges

Existing coding rules are still deficient in decisive features or
patterns for indicating their launch points. Contrary to natural
language environment, or formal specification of a software
system which is typically described by dozens or hundreds
of properties [7], rules are normally no more than 20 words.
High frequency words such as “forbidden”, “cautious”,
and some prepositions such as “of” lack guiding significance
in design. Despite these noisy words, there is little meaningful
information retained which neither leads to distinct depiction
for rules’characteristics, nor reflects where can carry out the
inspection for them. We are in need of more clues.

The same launch points where many rules reside in present
some inspiration. Rules in the same launch points can be
classified naturally as one category, e.g., Rule 6.1.15 and Rule

3

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

14.1.2, no matter how different they are. Under such grant,
rules are assumed having the consistent similarity trends with
their launch points. Then, the similarity analyses from launch
points, in turn, can guide the characterizing for rule regulations,
which are defined as rule patterns. The differences in words
of rules can be balanced by a set of personalized weights.
Ultimately, the major task of Referee turns into training rule
patterns, especially personalized weights, under the guidance
of available similarity distances between launch points. The
accumulated knowledge about both rules and launch points can
benefit new coming rules correspondingly. This is the basic
principle of Referee.

C. Our Referee Solution

Referee aims to relieve manual efforts via accumulated
experiences on rule similarities. Not directly dealing with
rules, it digs out decisive information from the launch points
of implemented rules in the analyzer. The resulted similarity
trends should be consistent in their rules and thus can be used
to guide the training on similarities of coding rules. Finally we
can obtain a group of rule patterns for characterizing rules. The
relation between rule patterns and their invocation patterns form
a basic knowledge library for new rules in later development.
We demonstrate this process of Referee by an example in this
subsection.

As shown in Fig. 3, Referee is a two-level self-training
process which includes the pattern-guided self-training process
in Fig. 3 (a)-(d), and the recommendation process in Fig. 3(e).

We take 4 out of 5 rules from Fig. 2 as training seeds. In
Step-1 of Fig. 3(a), their actual launch points are collected and
parsed into invocation patterns of <file name, function module,
parameters>with CoreNLP [8] and maintained in IPT. We use a
group of initial personalized weights for vectorization of these
patterns so that the similarity distances between every two
invocation patterns can be evaluated. The similarity analyses
lead to 3 clusters with kmeans [9] at the end of the step.
Moreover, slightly differences in parameters result in further
breakup, e.g., the 1st category breaks into two sub-categories of
a and b. More details about patterns and similarity evaluations
are introduced in Section III-B.

In Step-2 of Fig. 3(b), necessary data is broadcasted from
invocation patterns to rule patterns. We use two fully-connected
graphs to complete the duplication between two types of
patterns. The caller graph (Caller-G) on the left and the rule
graph (Rule-G) on the right work as the carriers for two types
of patterns. Caller-G is made of invocation patterns denoted
with green vertexes. Three circles are the generated cluster
categories from Step-1. This step copies clusters, and transfers
the similarity distances on every edge, e.g., 0.004974 inside the
1st category or 0.0751 between the 1st and the 2nd categories,
from Caller-G to Rule-G. After duplication, Rule-G is almost
the same with Caller-G except the rule pattern representations
on every vertex. Thus, Referee is ready for the training for
rule pattern, especially necessary personalized weights.

Step-3 in Fig. 3(c) demonstrates the core step of self-training
for rule patterns. Similar to invocation patterns, each rule

pattern is formed by parsing coding rules into atomic words
with CoreNLP. Under the premise that rule patterns share
the same similarity with invocation patterns, as the orange
box on the right shows, we obtain a set of equations which
are composed of the available similarity distances and rule
patterns containing unknown personalized weights in blue. As
introduced in previous Section II-B, the major task of Referee
is actually to settle down the personalized weights for rule
patterns. With the Nonlinear Least Squares Method (NLS),
equations are resolved and a group of personalized weights can
be obtained which lead to quantized vectors for rule patterns.
At the end of this step, Rule Pattern Table (RPT) is turned out
which records the real-number rule pattern vectors as shown
in 3(d).

As the result of the self-training, an important relation atlas
between two types of patterns is set up in Step-4 in Fig. 3(d).
Each rule pattern in RPT is linked with an item of invocation
pattern in IPT. This means that for a new rule, once it can be
matched successfully to a known rule pattern in RPT, it can
be recommended with a launch point correspondingly.

Fig. 3(e) illustrates the fast scaling for new rules. Take
Rule 6.1.15 for example. Referee characterizes its rule pattern
with the corresponding weight values and requires similarity
analyses with all rule patterns in RPT. After that, it is answered
with the 1st major category in IPT, and then with a more
suitable sub-category denoted with a as its launch point.

III. APPROACH

Motivated by machine-learning aided optimization [10], [11],
Referee is designed as a two-level learning framework. In this
section, we first introduce the framework of Referee. Then we
detail the design for the self-training process. At the end, we
discuss the limitation waiting for further improvement.

A. The Framework

The two layers of Referee are illustrated in Fig. 4. The
upper layer is a pattern-guided self-training process, which
includes three modules, the pattern-based analysis module on
available launch points, the twin-graph aided broadcasting
module and the core self-training module for rule pattern
recognition. Referee starts from invocation pattern analysis
on launch points of partial rules which have been implemented
in the compiler, outputs a new classification after clustering.
Then, the analysis results are propagated to the corresponding
coding rules for training on rule patterns via a twin-graph
duplication module. In the core self-training module, Referee
deduces a group of rule patterns for characterizing coding rules.
Thus, an important mapping atlas is established between rule
patterns and invocation patterns, in which each rule pattern is
linked to an invocation pattern.

The lower layer of the recommendation process is designed
for scalability of Referee for new rules. For a new rule, its rule
pattern is first characterized, and then matched in the relation
atlas. Once successfully matched, the corresponding invocation
pattern can be recommended and thus the corresponding manual

4

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The two-level framework of Referee.

locating process can be avoided. In this way, the burden on
manual exploration can be relieved significantly.

B. The Pattern-Guided Self-Training Process

As a self-training mechanism, the training seeds in Referee
should cover a variety types of invocation patterns from
multiple different points, not just the large quantity. This can
get more diversified rule patterns involved in the training.
Moreover, although Referee is based on partial developed rules,
we recommend that as many words from the whole context of
user guide are utilized for more thorough analyses.

The whole pattern-guided self-training process is based on
two types of patterns, the invocation pattern and the rule
pattern. An invocation pattern is usually represented with
atomic words of no more than WORDS(≤ 20) including the
file name, the function module, and the required parameters,
which are extracted from an available launch point. Similarly,
a rule pattern is composed of atomic words from a rule
regulation. Basically, analyses on these patterns are similar
to that on sentences. Therefore, after vectoring the patterns
into real-numbers, Referee can perform similarity analyses
for patterns by utilizing mature research achievements from
Natural Language Processing (NLP) [12], [13] in our work.

As shown in Fig. 4, Step-1 of Referee starts analyses on
invocation patterns. For quantitative analyses on similarities, it
needs to vectorize each invocation pattern into real-number.
After combining all words with a group of initial personalized
weights, the real-number vector for each invocation pattern can
be formed. Thus, the similarity distances between every two
pattern vectors can be evaluated and all invocation patterns
can be clustered into several major categories with kmeans.

1) Atomic Words and Personalized Weights: By methods of
Continuous Bag-of-Words (CBOW) [12] and word2vec [13],
each word is turned into a LEN-D real-number vector wordv
<v1,v2,...,vk , ...,vLEN>, where vk is a real number on the
kth dimension. A few examples are given in Table. I(a), e.g.,
the wordv of “cond” is <0.241,...,0.165>. LEN is a tunable
boundary for all vectors, which is initialized to 10 in our work
due to the short length of launch points and rule regulations.

Each atomic word has a personalized weight pw as discussed
in Section II-C. It is determined collaboratively by the basic
weight b_weight, and the special weight s_weight as shown in
(1). The basic weight b_weight, is decided explicitly by the
occurrences of the word, occ, together with an auxiliary factor
α (initialized to 0.001) in the whole SPACE-C context as in (2)
[14]. Another auxiliary factor, special weight s_weight, is used
for a more accurate regulation on the different significance of
each word in different rules.

pw = b_weight ∗ s_weight (1)

b_weight = α/(α+ occ) (2)

Referee uses a series of initial pw to start the similarity
analyses between invocation patterns, which in turn are used to
guide the training for another group of pw (mainly s_weight)
used on rule patterns. These s_weight values are the key
features for characterizing rules.

2) Pattern Vectorization: With atomic word vectors and their
personalized weights, a pattern vector can be deduced [14]. A
pattern is composed of word vectors of wordv1, wordv2,...,
wordvm,..., wordvWORDS(1 ≤ m ≤ WORDS), while wordvm

is the vector of the mth atomic word and wordvm(k) is a
real number vk on the kth dimension. We use pwwordvm

as its
personlized weight. Then, the pattern vector is decribed with
pv <pv1, pv2,..., pvk,..., pvLEN >, while element pvk ((1 ≤ k
≤ LEN)) is calculated by integrating all vk from the pattern’s
composing words and their personalized weights as in (3).

pvk = (
WORDS∑

m=1

(wordvm(k)) ∗ pwwordvm

)/WORDS (3)

Table. I(a) demonstrates the quantization process for invoca-
tion patterns of Rule 14.1.2 which is described with words <c-
parser.c, c_parser_condition, cond, context>. After initializing
s_weight with 0.6, 0.3, and 0.1 for file name, function name,
and parameters respectively, a series of pw(denoted with βm)
are obtained. The quantized pattern vector for Rule 14.1.2 then
can be generated, e.g, <0.0194, 0.0546, -0.0961,..., -0.0749>.

5

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXAMPLE WITH RULE 14.1.2 AND RULE 6.1.1 FOR QUANTIZATION OF

PATTERN VECTORS, DEDUCTION OF PERSONALIZED WEIGHTS (pw) AND
SIMILARITY DISTANCES (SD).

(a). Quantization process for invocation pattern pv of Rule 14.1.2 during Step-1

Example Type word1 word2 word3 word4

Rule

14.1.2

words c-parser.c
c_parser_conditio

n
cond context

pw =1.909 =0.470 =0.256 =-3.32

wordv <0.545,.,0.268> <-0.046,.,-0.052> <0.241,.,0.165> <0.096,.,0.0275>

pv

<((1) ×)/WORDS , … , ((10) ×)/

WORDS >

= <0.0194, 0.0546, -0.0961,..., -0.0749>

Rule

6.1.1
pv <0.3608, 0.0708 -0.1287,..., -0.1766>

SD

 ()

= ((0.0194 0.3608) + (0.0546 0.0708) …)

= 0.0705

(b). Training for and rule pattern pv of Rule 14.1.2 with SD=0.0705 during Step-3

Example Type word1 word3

Rule

14.1.2

words discrimination =0.1495 expressions =-1.2393

wordv <0.0357, 0.0291,…,-0.0187> <-0.0225,0.0401,…,-0.0352>

pv

<(() ×)/ , … , (() ×)/

 >

= < 0.0203, -0.0317, -0.0029,..., 0.0281 >

Rule

6.1.1
pv

<(() ×)/ , … , (() ×)/

 >

3) Similarity Distance: The similarity distance SD between
two patterns, either invocation or rule ones, pvi and pvj , is
calculated with the square root of the sum of all dimension
distance squares between per dimension as (4) shows [15]. The
lower the distance is, the more similar two patterns are.

SD[i,j] =

√√√√LEN∑
k=1

(pvki − pvkj)2 (4)

In Table. I(a), with pv1 and pv2 for Rule 14.1.2
and Rule 6.1.1, SD of 0.0705 can be generated, which is
close enough to cluster them into the 1st category in Fig. 3(b).

4) Clustering: At the end of Step-1, the invocation patterns
are clustered into CLUSTERS major categories with kmeans,
as the categories indexed from 1 to 3 in Step-1 of Fig. 3(a).
A major category is furtherly broken into sub-categories in
order to distinguish those patterns which are slightly different
in parameters, e,g., denoted with α and β in IPT of Fig. 3(a).
This can make the later recommendation information more
practical.

C. The Twin-Graph Aided Broadcasting

Step-2 in Fig. 4 is responsible for data duplication, mainly
similarity distances duplication. Referee uses two fully graphs
for this information broadcasting. One graph, Caller-G, is built
on invocation patterns, and the other, Rule-G, is on rule patterns.
The duplication includes almost everything except different
pattern representations on every vertex. Thus, Referee is ready
for the training for rule patterns.

A rule may have more than one invocation point when
containing multiple detection contents. We separate these rules
into discrete vertexes to maintain the relation between rules
and launch points as one-to-one.

D. The Self-Training Module for Rule Pattern

Step-3 demonstrates the core stage of the self-training
process for personalized weights of rule patterns. The core
idea of Referee is that rule patterns share the same similarity
trends with invocation patterns. A similarity distance from
two invocation patterns is also the input for training of the
corresponding rule patterns. Table. I(b) demonstrates this
process. With SD of 0.0705 between pv1 and pv2, a set of
equations containing unknown pw values(denoted with γmi ,
mainly containing unknown s_weight) can be set up. With the
NLS method, a group of γmi values, wordv, and pv for each
rule vector can be deduced in succession, e.g., pv1 for Rule
14.1.2 is <0.0203, -0.0317, -0.0029,..., 0.0281>. Thus, we can
character any new rule with this information.

At the end of the step, the correlation atlas between two
types of pattern is established during Step-4.a as shown in
Fig. 4. Referee adopts the rule patterns of centroids as the
representatives for each category as examples in Fig. 3(d).
Thus, new rules can be processed only by examination with a
few centroids.

Once Referee fails to solve equations, Step-4.b of re-training
will re-start from Step-1 with another group of β values.

E. Recommendation

For a new rule Rulet, aided with personalized weights,
it is first characterized for the rule pattern, and then the
similarity distances with known centroids are measured for
determination on its major category. If necessary, further
analyses are performed inside the major category with all
vertexes to determine the sub-category. The recommendation is
completed with a specified invocation pattern(a launch point).

However, we observed that once the similarity distances be-
tween a new rule and all centroids are too high, it is dangerous
to manage to recommend. In case of wrong recommendation,
we use an empirical value λ as a criteria to remind of artificial
judgement. As shown in (5), it warns that all SDs between the
new rule Rulet and centroids are exceeding the boundary and
artificial interventions should be involved.

MINCLUSTERS
m=1 (SD[Rulet, Centroid

m]) ≥ λ (5)

F. Core Algorithms for Self-Training

Algorithm 1 and 2 illustrate the kernel algorithms for the
self-training process. Algorithm 1 demonstrates three major
modules in the pattern-guided self-training process of Referee.
Algorithm 2 of Training_γweight demonstrates the self-training
process in detail. In this stage, a group of equations are set up
according to (3) and (4), and γ values can be resolved with
NLS. Once failed, Referee restarts from Step-1 with another
group of β. The trials are limited under TRY_MAX (≤ 100)

6

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Self-Training
Input: Caller −G,Rule−G;
Output: Corelation_Atlas;

1 #define TRY _MAX = 100;//Maximum training trials
2 Initialize βweight = 0.6, 0.3, 0.1;
3 bool Tune_βweight = true;
4 while ((Tune_βweight)&&(TRY _MAX > 0)) do
5 //1. Pattern-Based Analysis with Kmeans
6 <Caller_SD,Clusters, C_Centroid>=

Analysis(Caller-
G, βweight, Invocation_Patterns);

7 //2. The Twin-Graph Aided Broadcasting
8 <Rule_SD,Clusters,R_Centroid >=Duplicate
9 <Caller_SD,Clusters, C_Centroid >;

10 //3. Rule Pattern Recognition
11 Tune_βweight =

Training_γweight(R_Centroid,Rule_SD);
12 if (!Tune_βweight) then
13 Adjust_βweight(); //4. Re-Training

TRY_MAX−1;
14 if (!TRY _MAX) then
15 warning("manual surveillance!")

16 else return Corelation_Atlas
17 (Invocation_Patterns,Rule_Patterns)

times in case of infinite loops, although we usually succeed
after few attempts.

G. Limitations

It should be pointed out that, as a self-tuning system, Referee
is good at recommending for those new rules whose patterns
have been covered by previous experiences. However, it is still
possible to fail. The ability of Referee depends on training
seeds. Rarely used words in rules can confuse Referee and
make it fail to match and recommend. At this time, the only
manual effort needed is to add the new invocation pattern in
the seeds. Subsequently, Referee can restart the training and
enrich itself automatically. Anyway, compared to traditional all-
manual mode, Referee is still helpful. Experiments in Section
IV certificate its feasibility. More research efforts on deep
smarter recommendations are still under-going.

IV. EVALUATIONS

Referee has been implemented to facilitate the design of our
GCC8.2-based analyzer. In this section, we validates Referee
in reducing redundant manual efforts without generating
wrong recommendations by answering the following research
questions (RQ):

RQ1: Is Referee feasible and reliable for compiler-based
analyzers?

RQ2: Is Referee scalable to other compatible rules else?
RQ3: Compared to manual analyses, is Referee worthwhile

and what is the upper line in cutting down manual efforts?

Algorithm 2: Training_γweight
Input: Centroids, SDs;
Output: Tune_γweight,Rule_Patterns;

1 bool Success = false;
2 //γweight Initialization
3 Initialize γweight = 0.6, 0.4;
4 bool Tune_βweight = false;
5

6 // Set up equations for training on γweight,
7 // Solving equations with the Nonlinear Least Squares

Method.
8 foreach cluster ∈ Clusters do
9 foreach edge ∈ Cluster do

10 <V ertexi, V ertexj>=
11 GetV ertex(edge, cluster);
12 Set_Equations(V ertexi, V ertexj);

13 //Nonlinear Least Squares Method, NLS
Success = Solving_Equations_with_NLS(
Rule_Patterns, γweight);

14

15 if (!Success) then
16 Tune_βweight = true;

17 return (Tune_βweight, γweight, Rule_Patterns)

A. Methodology

Referee is evaluated on a rule set from SPACE-C and
MISRA-C standards, which contains 163 rules including 22
intersections. Thus, the efficiency of Referee can be validated
via the recommendation results for these rules. RQ1 can
be answered by the ratio of successful recommendations.
The scalability of RQ2 is answered through experiments on
intersected rules. RQ3 is investigated via further comparison
between Referee and manual exploration.

The rule set is analyzed and designed manually at 69
dispersive launch points in the real design, which forms 69
categories naturally. Among them, about 128 rules have more
or less common words in their decisive character words, while
the rest 35 rules are characterized by some rarely used words.
We evaluate Referee via contrasts of the coincidence between
the manually real-designed launch points and the recommended
points.

First, we establish a standard for evaluation. All the available
69 real-designed launch points work as the standard answers.
Starting from these invocation points, Referee can form 69
category clusters naturally including centroids inside each
cluster. It then builds a Caller-G, and then deduces similarity
distances between every two rules. We use SDs values between
a rule patten and its centroid, SDstandard, as the standard
distance for comparisons in this section.

Referee adopts a portion of rules as training seeds, and
tries to recommend for the rest rules, i.e., the validation set.
The proportions of training seed rules can lead to different

7

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

2% 23% 6%

0%
25%
50%
75%

100%

1
.1

.1
2

1
5

.2
.2

2
.1

.6

2
.1

.5

2
.2

.1
a

6
.1

.1
2

a

6
.1

.1
8

6
.1

.4

6
.2

.3

1
2

.1
.1

5
.2

.1

6
.1

.8

3
.1

.4

3
.1

.7

9
.1

.3

8
.2

.2

6
.1

.1
5

a

1
4

.1
.2

c

8
.2

.4

2
.1

.1
a

2
.2

.2
a

1
1

.2
.2

c

1
3

.1
.1

1
1

.1
.2

1
1

.2
.2

b

3
.1

.2

7
.2

.2

5
.1

.2

1
.2

.4

6
.1

.6

6
.1

.1
5

b

1
1

.2
.2

a

1
.1

.1
b

8
.1

.1

7
.1

.6

7
.1

.8

1
.2

.7

7
.1

.1
0

1
.1

.1
9

1
.1

.5
a

1
.1

.7
b

1
.2

.2

1
.1

.7
a

1
3

.1
.2

4
.2

.1

1
5

.1
.1

1
5

.1
.4

4
.1

.2
a

1
.1

.5
b

M
a

tc
h

in
g

 D
e

g
re

e
(%

)

(a). 70% Training Rules and 30% Verification Rules (Abbr. E7-3, Accuracy 89.9%, Failures 10.1%)

2

0%

Matching Degree Failed Cases in Recommendation

0%
2% 0%

Threshold of

Artificial Intervention

2
.1

.5

Rules in Validation Set

3% 9% 4% 8% 4% 6% 1% 4%

0%
25%
50%
75%

100%

1
.1

.1
1

1
.1

.1
2

1
.1

.1
5

1
.1

.1
8

1
.1

.1
b

1
.1

.2
1

1
.1

.5
a

1
.1

.5
b

1
.1

.6
1

.1
.7

b
1

.2
.2

1
.2

.4
1

.2
.7

1
0

.1
.1

1
1

.1
.2

1
1

.2
.2

a
1

1
.2

.2
b

1
1

.2
.3

a
1

1
.2

.3
b

1
2

.1
.1

1
2

.2
.3

1
3

.1
.1

1
3

.1
.3

1
4

.1
.2

c
1

4
.1

.3
1

5
.1

.1
1

5
.1

.2
1

5
.1

.4
1

5
.2

.1
1

5
.2

.2
2

.1
.1

a
2

.1
.1

b
2

.1
.2

c
2

.1
.6

2
.2

.1
b

2
.2

.2
a

3
.1

.2
3

.1
.7

4
.1

.1
a

4
.1

.1
b

4
.1

.2
a

4
.2

.1
5

.1
.1

5
.1

.2
5

.2
.1

6
.1

.1
3

6
.1

.1
5

a
6

.1
.1

5
b

6
.1

.1
7

6
.1

.1
8

6
.1

.1
b

6
.1

.4
6

.1
.6

6
.1

.8
6

.2
.2

7
.1

.1
0

7
.1

.2
7

.1
.6

7
.1

.8
7

.2
.2

8
.1

.1
8

.2
.2

8
.2

.4
9

.1
.2

9
.1

.3

M
a

tc
h

in
g

 D
e

g
re

e
(%

)

(b). 60% Training Rules and 40% Verification Rules (Abbr. E6-4, Accuracy 87.7%, Failures 12.3%)

11 a 7 11 2 3 4 1 22 8 22

Rules in Validation Set

4% 1% 4%44%%

1% 2% 2% 6%
6%

2% 1%
2%

0%
25%
50%
75%

100%

1
.1

.1
1

1
.1

.1
2

1
.1

.1
5

1
.1

.1
8

1
.1

.1
9

1
.1

.1
b

1
.1

.2
1

1
.1

.2
2

1
.1

.5
a

1
.1

.5
b

1
.1

.6
1

.1
.7

a
1

.1
.7

b
1

.2
.2

1
.2

.4
1

.2
.7

1
.2

.8
1

0
.1

.1
1

1
.1

.2
1

1
.2

.2
a

1
1

.2
.2

b
1

1
.2

.2
c

1
1

.2
.3

a
1

1
.2

.3
b

1
2

.1
.1

1
2

.2
.3

1
3

.1
.1

1
3

.1
.2

1
3

.1
.3

1
4

.1
.2

c
1

4
.1

.3
1

5
.1

.1
1

5
.1

.2
1

5
.1

.4
1

5
.1

.6
1

5
.2

.1
1

5
.2

.2
2

.1
.1

a
2

.1
.1

b
2

.1
.2

c
2

.1
.5

2
.1

.6
2

.2
.1

a
2

.2
.1

b
2

.2
.2

a
3

.1
.2

3
.1

.4
3

.1
.7

4
.1

.1
a

4
.1

.1
b

4
.1

.1
c

4
.1

.2
a

4
.2

.1
5

.1
.1

5
.1

.2
5

.2
.1

6
.1

.1
2

a
6

.1
.1

3
6

.1
.1

5
a

6
.1

.1
5

b
6

.1
.1

7
6

.1
.1

8
6

.1
.1

b
6

.1
.1

c
6

.1
.4

6
.1

.6
6

.1
.8

6
.2

.2
6

.2
.3

7
.1

.1
0

7
.1

.2
7

.1
.6

7
.1

.8
7

.2
.1

7
.2

.2
8

.1
.1

8
.2

.2
8

.2
.4

8
.2

.8
9

.1
.2

9
.1

.3

M
a

tc
h

in
g

 D
e

g
re

e
%

(c). 50% Training Rules and 50% Verification Rules (Abbr. E5-5, Accuracy 81.5%, Failures 18.5%)

111111 22222 a22 7 88 1 2 3 1 2

1% 2%2 2% 6%
6%

2% 1%
2%

0% 0% 1% 0%

Rules in Validation Set

1% 0%
1%

Fig. 5. Validation experiments with randomly selected training seeds and tunable proportion between the training seeds and the validation set.

E5 5 E6 4 E7 3

Rare

Words

Words

Fig. 6. Rarely used words in the decisive characters of rule patterns which
affect the recommendation.

recommendation results for the validation set. We use SDvalid

as the new similarity distance between the recommended
invocation point and the centroid in the standard category
it should belong to. Thus, evaluations on the feasibility and
reliability of Referee can be made from two aspects, the
matching degree (%) and the accuracy (%). As in (6), the
matching degree evaluates the accuracy in recommendation for
a single rule via contrasts between SDstandard and SDvalid.
Higher value stands for higher coincidence between the
recommended sites and the manual design sites. The accuracy
(%) counts the matching degree of the whole validation set, and
higher rate means higher feasibility and reliability of Referee.
Then the failures (%) count the ratio in the validation set which
Referee fails to recommend correctly and require artificial
interventions.

Matching Degree = (SDvalid)/(SDstandard) ∗ 100% (6)

B. Experimental Setup

Platform and Compiler: Our working platform is a 20-
core server with two 2.2GHz Intel(R) Xeon(R) E5-2630 CPU,

Ubuntu 14.04.5 and 256G memory. Referee has been imple-
mented in GCC (version 8.2) due to our further requirements
on compiler optimizations.

Benchmarks: Referee provides full supports for test cases
from SPACE-C user guide, which is partially compatible with
MISRA-C (22 rules).

C. Feasibility and Reliability of Referee

Fig. 5 certifies the feasibility and the reliability of Referee.
Experiments are performed with randomly selected training
rules. By shrinking the proportion of training seeds from 70%,
60%, to 50%, while increasing the validation set from 30% to
50% correspondingly, experiments show that Referee obtains
acceptable accuracy in recommendations on partial developed
rules. For clarity, we use E7-3, E6-4 and E5-5 for short in later
sub-sections.

Each figure contains the recommendation results for the
validation set. Grey bars stand for the matching degree for
SPACE-C rules. Blue bars stand for the matching degrees for
rules from MISRA-C, which are also intersected rules in these
two user guides. In these figures, most rules present higher
matching degree values, which mean the recommended calling
sites are coincide with the standard launch points. Experiments
in Fig. 5(a)(E7-3) demonstrate that once training with enough
seeds of 70% rules, Referee can work with an accuracy rate up
to 89.9% in recommendation. We also investigate the relation
between the accuracy of Referee and the training set in the
latter two experiments in Fig. 5. As shown in Fig. 5(b)(E6-4)
and (c)(E5-5), by gradually reducing seed rules to 60% and

8

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

1% 2%

0%

25%

50%

75%

100%

1
.1

.1
1

1
.1

.1
0

1
.1

.1
2

1
.1

.1
5

1
.1

.1
8

1
.1

.1
9

1
.1

.1
b

1
.1

.2
1

.1
.2

2
1

.1
.5

a
1

.1
.5

b
1

.1
.6

1
.1

.7
a

1
.1

.7
b

1
.1

.8
a

1
.2

.2
1

.2
.3

1
.2

.4
1

.2
.8

1
.2

.9
1

1
.1

.2
1

1
.2

.1
a

1
1

.2
.2

a
1

1
.2

.2
b

1
1

.2
.2

c
1

1
.2

.3
a

1
1

.2
.3

b
1

2
.1

.1
1

2
.2

.3
1

4
.1

.2
c

1
4

.1
.3

1
5

.1
.1

1
5

.1
.2

1
5

.1
.4

1
5

.2
.2

2
.1

.1
a

2
.1

.1
b

2
.1

.1
c

2
.1

.2
c

2
.1

.6
2

.2
.1

a
2

.2
.1

b
2

.2
.1

c
2

.2
.2

a
3

.1
.1

3
.1

.2
3

.1
.4

3
.1

.5
3

.1
.7

4
.1

.1
a

4
.1

.1
b

4
.1

.1
c

4
.1

.2
a

4
.1

.2
c

4
.4

.2
.1

5
.1

.1
5

.1
.2

5
.2

.1
6

.1
.1

2
a

6
.1

.1
3

6
.1

.1
5

a
6

.1
.1

5
b

6
.1

.1
7

6
.1

.1
8

6
.1

.1
b

6
.1

.1
c

6
.1

.4
6

.1
.6

6
.1

.8
6

.2
.3

7
.1

.1
0

7
.1

.2
7

.1
.6

7
.1

.8
7

.1
.9

8
.1

.1
8

.2
.2

8
.2

.4
8

.2
.8

9
.1

.2
9

.1
.3

M
a

tc
h

in
g

 D
e

g
re

e
%

Rules in Validation Set

2%

Threshold of Artificial Intervention

0% 0% 0%
0% 0% 0% 0% 0%

Failed Case in Recommendation Matching Degree

Improved Experiments with 50% Training Rules and 50% Verification Rules (Abbr. E5-5, Accuracy 87.7%, Failures 12.3%)

Fig. 7. Experiments on E5-5 with improved converge on training seed patterns.

Fig. 8. 69 discrete launch points in the real-design incur heavy manual efforts.
Rarely used words in rules lead to special categories only containing single
rule, which may incur failures potentially on recommendations.

50% of SPACE-C, Referee still can achieve accuracy of 87.7%
and 81.5%, with slightly but still acceptable decline.

Thismeans that the mechanism of Referee is a hopeful
measure to save manual exploration efforts with enough
sample seeds. Bars denoted with "x" stand for failures in
the recommendations. As discussed in Section III-G, Referee
still may fail in some cases, e.g., the 35 rules out of 163
containing scarcely used words in decisive characters cited
in Fig. 6. In case of wrong recommendation, Referee adopts
a high λ on experience as a threshold reminding of artificial
intervention, which can result in an extremely low matching
degree. We set it ≤0.25 as denoted with the red threshold
line in Fig. 5, e.g., the matching degree is 0% for Rule 2.1.5.
For these cases, Referee will remind the designer of artificial
intervention instead of clustering them blindly to any existing
categories. In our experiments, the proportion of such failures
is relatively low(E7-3 10.1%, E6-4 12.3% and E5-5 18.5%).

We further observe the potential of Referee with improved
converge on seeds’ patterns. We refine E5-5 due to its lowest
accuracy. By absorbing more invocation patterns in the training
seeds which have rare words in their corresponding rules, the
accuracy increases from 81.5% to 87.7% (failure cases decrease
from 15 to 10) in Fig. 7, which approaches the accuracy of
87.7% in E6-4 in Fig. 5(b). We can see that although scarcely
used words do impede the accuracy of Referee, it still can be
improved once with higher coverage on seed rules’ patterns.

D. The Scalability of Referee

The scalability of the mechanism of Referee can be verified
via blue bars in Fig. 5. When training with randomly selected
seeds from the mixed rule set, most of the intersected rules get
success recommendations. Further validations on intersected
rules are demonstrated in Fig. 9, when training with 141
exclusive rules from SPACE-C, 20 out of 22 intersected

0%
25%
50%
75%

100%

5
.3

5
.7

6
.3

6
.4

9
.1

9
.3

1
1

.3

1
2

.1
3

1
2

.3

1
4

.1

1
4

.4

1
4

.5

1
5

.2

1
5

.3

1
6

.8

1
7

.5

1
8

.4

1
9

.1
0

1
9

.1
2

1
9

.5

1
9

.6

2
0

.1

M
a

tc
h

in
g

 D
e

g
re

e
(%

)

37

Matching Degree

Failed Cases in Recommendation

Intersected Rules in MISRA-C(indexes in MISRA-C user guide)

1.2.1

Fig. 9. Training with SPACE-C exclusive rules and verify with intersected
Rules of MISRA-C (Accuracy 90.9%, Failures 9.1%)

rules(90.9%) achieve coincide results with the standard answers
except 2 rules (9.1%) which contain unique words in rule
descriptions, e.g., “signedness” in Rule 6.3 of MISRA-
C(or 1.2.1 of SPACE-C). These results show that Referee is
capable of applying in other C-language code rules. In order to
be more helpful, it is suggested that researchers or practitioners
choose rules which are clearly distinct. This can contribute to
a much knowledgeable atlas, and then Referee can play a more
pratical role for the design of new rules. It is under-going for
Referee to co-operate in the development of compilers, e.g.,
Loongson Compiler.

E. The Upper Limit of Referee

The upper limit of Referee in saving efforts depends on
reasonable coverage on seeds’ types. As shown in Fig. 8,
our analyzer has 69 discrete launch points which lead to
69 categories. The actual design process requires tedious
exploration efforts due to frequently re-position for rules. In
this instance, Referee is necessary and helpful.

UpLimit(Referee) = (RULES − CLUSTERS)/RULES
(7)

All the above analyses demonstrate that Referee has a upper
line which, ideally, relies on the number of real categories.
As (7) shows, Referee can effectively save efforts for the rest
of rules after fully covering CLUSTERS types of invocation
patterns. In our work, it means saving about 94 rules only with
69 pieces of manually implemented seed rules(43% of all)
which fully cover the 69 categories of invocation patterns. This
can reduce the R&D cycle to half.

However, we observed that invocation patterns or rules which
contain rare words can pull down the capability of Referee.
Further statistics on yellow icons in Fig. 8 show that about 36
out of 69 categories contain single rule due to their scarcely
used words. These invocation patterns and rules can only play

9

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

one role, either as a training seed which can not be validated,
or a validated rule which fail to find mature experiences from
training. Either way can pull down the accuracy of Referee.
Experiments in Fig. 5 have certificated that they are the main
source of recommendation failures because of missing matched
categories. Once combined coding rules with researches in
formal description [16], Referee can further weaken the side-
effects of rarely used words. Thus, Referee is such a promising
method to in-cooperate the expert designer’s experiences in
the analyzer design more efficiently.

V. RELATED WORK

Referee has been motivated by machine-learning aided
programming, which falls into the joint area of code analyzers
and automatic compilation.

Static Code Analyzers: Industry coding conventions can
enhance the safety and robustness of codes. Most of them focus
on frequently used languages such as Java [1], [2] or C [5], [6].
Correspondingly, code analyzers are under ongoing demand in
order to unearth potential flaws in coding efficiently [4], [17]–
[22]. There are many open-source analyzers such as Checkstyle
[17], FindBugs [19] or some commercial tools such as Coverity
[4] famous for C and Java language inspection. Tools such as
Astrée [23], PVS-Studio Analyzer [24] focus on runtime errors,
or certain types of problems such as about arrays, and RuboCop
[21] in code format. Many of these techniques support cross-
language coding conventions and extensive APIs by users [4],
[25].

Machine-Learning in Analyzer: Machine-learning in static
code analyzers is relatively scarce. NATURALIZE [26] is a
general learning framework which solves the coding convention
inference via learning on code styles. The study in [27] has
quantified the relation between rule violations and actual faults
with empirical data for the MISRA C 2004 standard.

Machine-Learning in Compilation: Machine-learning in
compilation has been an active research area for several years.
A number of studies have emerged for relieving manual efforts
by automatic compilation due to the complexity of compiling
techniques. They initiated from iterative-compilation [28]–[30]
or auto-tuning [31] on performance. They centered around
specific optimizations such as unrolling or register allocation,
and then stepped into more mature areas including optimisation
space [32]–[34] for performance prediction [35]–[37], and
performance maximisation [37], improvement on learning
algorithms [38], feature engineering [39] with systematic
representations, or reduction on learning costs [30].

Of late, some researches penetrated into wider applica-
tion with machine-learning algorithm. The study in [40]
has extended adaptive automatic program transformation to
more architectures for data-parallel languages. New compiler
technique combined with structured genetic tuning algorithms is
proposed for variable-accuracy algorithms with better trade-off
between time and accuracy in compiler [41]. CLgen is proposed
as a machine learning based generator for OpenCL programs
for better performance [42]. Newly emerging investigation have
been devoted in code size reduction [43], [44].

There are some thorough surveys about automatic compiling
techniques. Research in [45] details the machine-learning-
based compilation techniques of the latest stage. It has
performed in-depth analyses for different learning methods
in performance predication and learning costs, and investigated
potential challenges in research directions. Research in [46]
presents deep thoughts in learnable probabilistic models on code
patterns at the intersection of machine learning, programming
languages, and software engineering recently. It also gives
unique discussion on cross-cutting and application-specific
challenges and opportunities.

Machine-Learning in Detection and Verification:
Machine-learning has been used for bug detection, such as
TAC for static use-after-free(UAF) detection [11], software
defect prediction [47], memory leaks detecion [48], buffer
overflow detection [49], violations of temporal safety detection
by compile-time transformation [50], etc.

Studies in program verification and source code transforma-
tion have inspired our work. Feature engineering [39] of auto-
tuning are the base for characterizing or description in natural
language. Related work in natural language generation includes
characterizing specific fault patterns for programming error
prevension [51], code summarization via a high level natural
language description for better software maintenance and
code categorization, code auto-generation such as producing
programmers’ style benchmarks for verification [10], [52],
automatic program repair systems based on systematic analysis
of key characteristics [53].Studies about code transformation
also make language processing more convient and efficient.
[54], [55]Machine-learning has been integrated flexibly in areas
such as software maintenances, e.g., code smells combined
with deep learning for software refactoring instead of manually
identifying certain code structures [56].

Our work is on the way to automatic design for code
analyzers. Referee combines automatic feature analysis together
with the design of static analyzers, but with key differences in
feature patterns and the learning model. We are still going on
to combine studies such as declarative specifications or pattern
characterizing [16], [51] in so that Referee can benefit from
formal formats in rules, and can be spreaded into wider area.

VI. CONCLUSION

We present Referee, a pattern-guided design approach for
compiler-based analyzers, and demonstrate the feasibility with
high accuracy in guiding the location of launch points for new
rules. Referee can work efficiently via 1) carefully selected
training seeds, 2) pattern-based analysis and 3) a machine-
learning aided rule pattern recognition. It is an effective method
to integrate the expert designer’s experiments in the analyzer.

ACKNOWLEDGMENTS

We would like to particularly acknowledge Professor Wei
Huo of Institute of Information Engineering, CAS, China and
the anonymous reviewers who helped us improve the quality
of our paper in its final version.

10

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Alibaba, “Alibaba java coding guidelines pmd implements and ide
plugin,” 2017. [Online]. Available: https://github.com/alibaba/p3c/

[2] Google, “Google java style guide,” 2017. [Online]. Available:
https://checkstyle.org/styleguides/google-java-style-20170228.html

[3] Sun, “Code conventions for the java programming language: Contents,”
1997. [Online]. Available: https://www.oracle.com/technetwork/java/
javase/documentation/codeconvtoc-136057.html

[4] Coverity, “Coverity static application security testing.” 2019. [Online].
Available: https://www.synopsys.com/software-integrity/security-testing/
static-analysis-sast.html,VisitedMarch9

[5] MISRA, “Misra 2012,” 2012. [Online]. Available: https://www.misra.org.
uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx.

[6] SPACE, “Gjb 5369 2005 space model software language c safe
subset.” 2005. [Online]. Available: https://download.csdn.net/download/
zhangqian_zhangqian/10225409

[7] S. Apel, D. Beyer, V. Mordan, V. Mutilin, and A. Stahlbauer, “On-the-fly
decomposition of specifications in software model checking,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 349–361. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950349

[8] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The stanford corenlp natural language processing toolkit,”
01 2014.

[9] Kmeans, “Kmeans,” 2019. [Online]. Available: https://www.mathworks.
com/help/stats/kmeans.html,VisitedMarch9

[10] G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen, and Z. Wang,
“Yet another text captcha solver: A generative adversarial network based
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS’18. Toronto, ON,
Canada: ACM, 2018, pp. 332–348.

[11] H. Yan, Y. Sui, S. Chen, and J. Xue, “Machine-learning-guided typestate
analysis for static use-after-free detection,” in Proceedings of the 33rd
Annual Computer Security Applications Conference, ser. ACSAC 2017.
New York, NY, USA: ACM, 2017, pp. 42–54. [Online]. Available:
http://doi.acm.org/10.1145/3134600.3134620

[12] CBOW, “Continuous bag of words,” 2019. [Online]. Available:
https://iksinc.online/tag/continuous-bag-of-words-cbow/,VisitedMarch9

[13] word2vec, “Coverity static application security testing.” 2019. [Online].
Available: https://en.wikipedia.org/wiki/Word2vec,VisitedMarch9

[14] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” 2016.

[15] Euclidean, “Euclidean distance,” 2019. [Online]. Available: https:
//en.wikipedia.org/wiki/Euclidean_distance,VisitedMarch9

[16] F. Molina, C. Cornejo, R. Degiovanni, G. Regis, P. F. Castro, N. Aguirre,
and M. F. Frias, “An evolutionary approach to translate operational speci-
fications into declarative specifications,” in Formal Methods: Foundations
and Applications, L. Ribeiro and T. Lecomte, Eds. Cham: Springer
International Publishing, 2016, pp. 145–160.

[17] CheckStyle, “Checkstyle,” 2019. [Online]. Available: http://checkstyle.
sourceforge.net/

[18] Checkmarx, “Checkmarx,” 2019. [Online]. Available: http://www.
binqsoft.com/solutions/checkmarx?audience=309202,VisitedMarch9

[19] FindBugs, “FindbugsTM - find bugs in java programs,” 2019. [Online].
Available: http://findbugs.sourceforge.net/,VisitedMarch9

[20] P. Jtest, “Parasoft jtest,” 2019. [Online]. Available: https://www.eswlab.
com/products/parasoft/jtest/,VisitedMarch9

[21] RuboCop, “Rubocop,” 2019. [Online]. Available: https://www.rubocop.
org/en/stable/,VisitedAug12

[22] D. Hou and H. J. Hoover, “Using scl to specify and check design intent
in source code,” IEEE Transactions on Software Engineering, vol. 32,
no. 6, pp. 404–423, 2006.

[23] ASAnalyzer, “Astrée static analyzer,” 2019. [Online]. Available:
http://www.astree.ens.fr/,VisitedMarch9

[24] P.-S. Analyzer, “Pvs-studio analyzer,” 2019. [Online]. Available:
https://www.viva64.com/en/pvs-studio/,VisitedMarch9

[25] PMD, “Pmd,” 2019. [Online]. Available: https://pmd.github.io/pmd-6.10.
0/index.html,VisitedMarch9

[26] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.

FSE 2014. New York, NY, USA: ACM, 2014, pp. 281–293. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635883

[27] C. Boogerd and L. Moonen, “Assessing the value of coding standards:
An empirical study,” in 2008 IEEE International Conference on Software
Maintenance, Sep. 2008, pp. 277–286.

[28] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou, “Iterative
compilation in a non-linear optimisation space,” 1998.

[29] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle, “Combined
selection of tile sizes and unroll factors using iterative compilation,”
in Proceedings of the 2000 International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’00. Washington,
DC, USA: IEEE Computer Society, 2000, pp. 237–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=517554.825767

[30] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams, “Using machine learning
to focus iterative optimization,” in International Symposium on Code
Generation and Optimization (CGO’06), March 2006, pp. 11 pp.–305.

[31] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” 11 2008,
p. 4.

[32] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August, “Compiler optimization-space exploration,” in Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 204–215. [Online].
Available: http://dl.acm.org/citation.cfm?id=776261.776284

[33] J. D. Thomson, “Using machine learning to automate compiler optimisa-
tion,” Tech. Rep., 2008.

[34] Z. Pan and R. Eigenmann, “Fast and effective orchestration of compiler
optimizations for automatic performance tuning,” in Fourth IEEE/ACM
International Symposium on Code Generation and Optimization, ser.
CGO 2006. New York, New York, USA: IEEE Computer Society, 2006,
pp. 319–332.

[35] J. Cavazos and J. E. B. Moss, “Inducing heuristics to decide whether
to schedule,” in IN PROCEEDINGS OF THE ACM SIGPLAN’04
CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND
IMPLEMENTATION. ACM Press, 2004, pp. 183–194.

[36] A. Monsifrot, F. Bodin, and R. Quiniou, “A machine learning approach to
automatic production of compiler heuristics,” in In Artificial Intelligence:
Methodology, Systems, Applications. Springer Verlag, 2002, pp. 41–50.

[37] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and M. F. P.
O’Boyle, “Portable compiler optimisation across embedded programs
and microarchitectures using machine learning,” in Proceedings of the
42Nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 42. New York, NY, USA: ACM, 2009, pp. 78–88.
[Online]. Available: http://doi.acm.org/10.1145/1669112.1669124

[38] S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization
phase-ordering problem using machine learning,” in Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12. New
York, NY, USA: ACM, 2012, pp. 147–162. [Online]. Available:
http://doi.acm.org/10.1145/2384616.2384628

[39] A. Monsifrot, F. Bodin, and R. Quiniou, “A machine learning approach
to automatic production of compiler heuristics,” in Artificial Intelligence:
Methodology, Systems, and Applications, D. Scott, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2002, pp. 41–50.

[40] A. Magni, C. Dubach, and M. O’Boyle, “Automatic optimization of
thread-coarsening for graphics processors,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation, ser.
PACT ’14. New York, NY, USA: ACM, 2014, pp. 455–466. [Online].
Available: http://doi.acm.org/10.1145/2628071.2628087

[41] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe, “Language and compiler support for auto-tuning variable-
accuracy algorithms,” in International Symposium on Code Generation
and Optimization (CGO 2011), April 2011, pp. 85–96.

[42] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “Synthesizing
benchmarks for predictive modeling,” in 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Feb 2017, pp.
86–99.

[43] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Function merging by sequence alignment,” in Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO 2019. Piscataway, NJ, USA: IEEE Press,

11

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

2019, pp. 149–163. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3314872.3314892

[44] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta,
“Exploiting function similarity for code size reduction,” in Proceedings
of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems, ser. LCTES ’14. New York,
NY, USA: ACM, 2014, pp. 85–94. [Online]. Available: http:
//doi.acm.org/10.1145/2597809.2597811

[45] Z. Wang and M. O’Boyle, “Machine learning in compiler optimisation,”
CoRR, vol. abs/1805.03441, 2018. [Online]. Available: http://arxiv.org/
abs/1805.03441

[46] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Comput.
Surv., vol. 51, no. 4, pp. 81:1–81:37, Jul. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3212695

[47] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 297–308. [Online]. Available: http:
//doi.acm.org/10.1145/2884781.2884804

[48] S. Lee, C. Jung, and S. Pande, “Detecting memory leaks through
introspective dynamic behavior modelling using machine learning,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 814–
824. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568307

[49] L. Li, C. Cifuentes, and N. Keynes, “Practical and effective symbolic
analysis for buffer overflow detection,” in Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. New York, NY, USA: ACM, 2010, pp. 317–
326. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882338

[50] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets:
Compiler enforced temporal safety for c,” in Proceedings of the 2010
International Symposium on Memory Management, ser. ISMM ’10.

New York, NY, USA: ACM, 2010, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/1806651.1806657

[51] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and
G. Pu, “Efficiently manifesting asynchronous programming errors in
android apps,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE 2018. New
York, NY, USA: ACM, 2018, pp. 486–497. [Online]. Available:
http://doi.acm.org/10.1145/3238147.3238170

[52] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly,
and S. Amarasinghe, “Autotuning algorithmic choice for input
sensitivity,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: ACM, 2015, pp. 379–390. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737969

[53] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: ACM, 2017, pp. 727–739. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106253

[54] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight
transformation and fact extraction with the srcml toolkit,” in 2011 11th
IEEE Working Conference on Source Code Analysis and Manipulation.
Los Alamitos, CA, USA: IEEE Computer Society, sep 2011, pp.
173–184. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SCAM.2011.19

[55] J. R. Cordy, “The txl source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[56] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy
detection,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE 2018. New
York, NY, USA: ACM, 2018, pp. 385–396. [Online]. Available:
http://doi.acm.org/10.1145/3238147.3238166

12

Authorized licensed use limited to: University of Exeter. Downloaded on June 22,2020 at 10:14:41 UTC from IEEE Xplore. Restrictions apply.

